Press Release - 22 June 2006 University of Bath: "Magnetic field research could make computers 500 times more powerful
Magnetic fields created using nanotechnology could make computers up to 500 times more powerful, if new research is successful.
The University of Bath is to lead an international £555,000 three-year project to develop a system which could cut out the need for wiring to carry electric currents in silicon chips.
Computers double in power every 18 months or so as scientists and engineers develop ways to make silicon chips smaller. But in the next few years they will hit a limit imposed by the need to use electric wiring, which weakens signals sent between computer components at high speed.
The new research project could produce a way of carrying electric signal without the need for wiring. Wi fi internet systems and mobile phones use wireless technology now, but the electronics that create and use wireless signals are too large to be used within individual microchips successfully.
The research project, which involves four universities in the UK and a university and research centre in Belgium and France, will look at ways of producing microwave energy on a small scale by firing electrons into magnetic fields produced in semi-conductors that are only a few atoms wide and are layered with magnets.
The process, called inverse electron spin resonance, uses the magnetic field to deflect electrons and to modify their magnetic direction. This creates oscillations of the electrons which makes them produce microwave energy. This can then be used to broadcast electric signals in free space without the weakening caused by wires.
The possibility of using the special semi-conductors in this way was first pointed out by Dr Alain Nogaret, of the University of Bath’s Department of Physics, in an important scientific paper in 2005 (Electrically Induced Raman Emission from Planar Spin Oscillator, in Physical Review Letters). The latest resea"